Learning

Software Tutorials

Using Python in Itasca Software

Python scripting is built into current versions of FLAC3D, 3DEC, and PFC. This video introduces users of Itasca software to working with Python and FLAC3D, 3DEC, and PFC types (zones, blocks, ball, structural elements, and so on). The Itasca Module, a comparison with FISH scripting, and object-oriented and array-oriented interfaces are reviewed and demonstrated.

Generate a Hybrid Mesh by Combining Block Ranger and GVol

This tutorial will demonstrate a method to create a hybrid mesh of tetrahedral zones to model the rock mass and hexahedral zones to model a concrete liner. Hexahedral zones for the liner are preferred in order to more accurately capture plastic strains in this region. The meshing is done by utilizing the Itasca Griddle volume mesher plug-in for Rhino 3D. Importing the final mesh into FLAC3D, for future finite volume modeling, is also demonstrated.

Plotting 3D Isosurfaces

This tutorial demonstrates how you can add isosurfaces to your 3D Itasca model plots.

Technical Papers

Mine Dewatering in a Compartmentalized Hydrogeologic Setting at Sishen Mine in South Africa

Sishen mine in South Africa is one of the largest open-pit iron mines in the world.

The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec

Operations at Westwood mine in Quebec, Canada were temporarily halted in May 2015 after three large-magnitude seismic events occurred over two days. The mechanisms leading to these events, which caused severe damage to several accesses, were not well understood at first. This paper presents the key aspects of FLAC3D back-analysis modelling, which include (1) an anisotropic rock mass strength model with properties derived from field and laboratory strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations.

Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models

In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to classical DFNs. We consider two types of graphs, whether the nodes represent the fractures or the intersections between fractures.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More