Getting Started with FLAC2D/FLAC3D
Online23 Sept 2025 - 24 Sept 2025
This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the graphical interface, documentation and the main modeling steps. Concepts are illustrated using a tunnel excavation example, from building the model geometry to results analysis. This introductory course provides the foundation for more advanced use of the software, which can be covered in more specific training modules.
Getting Started with 3DEC
Online14 Oct 2025 - 15 Oct 2025
Live Online Introductory Training Course.
October 14-15, 2025

NEW TRAINING: Meshing in ITASCA Software
Online2 Dec 2025 - 3 Dec 2025
This introductory training course offers a comprehensive foundation in geotechnical modeling, enabling participants to identify various mesh types, effectively use the built-in tools in FLAC2D/3D and 3DEC, and gain practical experience with BlockRanger and Griddle for advanced mesh generation.
Software Tutorials
Bonded Block Model undergoing Damage and Bulking during Simulated Relaxation
Continuum numerical modeling is inherently limited when the rock behavior involves mechanisms such as spalling and bulking. The Bonded Block Model (BBM) approach simulates the initiation of cracks that can coalesce and/or propagate leading to extension and shear fracturing, as well as the rock (e.g., intact, jointed, or veined) strength dependency on confinement.
Working with Building Blocks in FLAC3D 6 (Part 1)
This video demonstrates using a library set of Building Blocks as a starting point for creating a new model. In this example, cylindrical blocks are snapped together to represent a tunnel and intersected with other blocks representing a nearby wall.
FLAC3D 6.0 Interactive Model Pane
Technical Papers
Input to Orepass Design — A Numerical Modeling Study
Orepass design guidelines required for potentially continued mining at depth. Rock strength and stress state were validated through comparison with observed fallouts in orepasses and shafts and the optimal orientation and location of orepasses for future mining were determined.
On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions
This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.
Tunnelling and reinforcement in heterogeneous ground – A case study
Abstract
A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.